If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25^2x-3=1/125
We move all terms to the left:
25^2x-3-(1/125)=0
We add all the numbers together, and all the variables
25^2x-3-(+1/125)=0
We get rid of parentheses
25^2x-3-1/125=0
We multiply all the terms by the denominator
25^2x*125-1-3*125=0
We add all the numbers together, and all the variables
25^2x*125-376=0
Wy multiply elements
3125x^2-376=0
a = 3125; b = 0; c = -376;
Δ = b2-4ac
Δ = 02-4·3125·(-376)
Δ = 4700000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4700000}=\sqrt{10000*470}=\sqrt{10000}*\sqrt{470}=100\sqrt{470}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{470}}{2*3125}=\frac{0-100\sqrt{470}}{6250} =-\frac{100\sqrt{470}}{6250} =-\frac{2\sqrt{470}}{125} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{470}}{2*3125}=\frac{0+100\sqrt{470}}{6250} =\frac{100\sqrt{470}}{6250} =\frac{2\sqrt{470}}{125} $
| 12x+7=−(2x−3)+16x | | 37x+1+3x+9=90 | | 3(4x+1)-6x=6(2-x) | | 3(4x=1)-6x=6(2-x) | | -8n-4n=7n-n | | (D^2+4D+5)y=5 | | 7+9g=-10g | | -4+8-n-4=n-6 | | 18m−13m=25 | | 6(x+2)=4(x+3) | | 5x+21=9(x-11) | | X+12+2x+18=180 | | x+12+2x+19=180 | | x+(3x+10)+2(3x+10)=1280 | | x+17+x+9=90 | | 1.5d-2=0.7d+1 | | 81*5.5/33=x | | 4x+22=25 | | Y=x-0.0002x2-2000-0.5x | | 5*15/6=x | | 52-xx=0.77 | | 3(y-0.5)=2(y+1)+4.5 | | 5*14/6=x | | 3∣x−2∣+5=7 | | x-0.77x=52 | | 12y+4=-3y+79 | | 15*5/6=x | | 10((134-10y)/9)+9y=132 | | 0.3p=5.4 | | 0.3l=5.4 | | 3(46-5y)+3y=42 | | 14*5/2=x |